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Abstract Intermediate‐depth earthquakes (focal depths 70–300 km) are enigmatic with respect to their
nucleation and rupture mechanism and the properties controlling their spatial distribution. Several recent
studies have shown a link between intermediate‐depth earthquakes and the thermal‐petrological path of
subducting slabs in relation to the stability field of hydrous minerals. Here we investigate whether the
structural characteristics of incoming plates can be correlated with the intermediate‐depth seismicity rate.
We quantify the structural characteristics of 17 incoming plates by estimating the maximum fault throw of
bending‐related faults. Maximum fault throw exhibits a statistically significant correlation with the
seismicity rate. We suggest that the correlation between fault throw and intermediate‐depth seismicity rate
indicates the role of hydration of the incoming plate, with larger faults reflecting increased damage, greater
fluid circulation, and thus more extensive slab hydration.

Plain Language Summary In subduction zones, one tectonic plate plunges beneath another into
the Earth's interior. Some of the earthquakes that occur at subduction zones are unusual due to their
occurrence at depths of 70 to 300 km (intermediate depths), deeper than the expected limit of brittle failure.
In this study, we evaluate whether the faults that form when a plate bends as it enters a subduction zone
can explain the occurrence of these deep earthquakes. Sea water penetrates deep into these faults and forms
new, hydrous minerals, but these new minerals are not stable deeper in the subduction zone. Laboratory
experiments show that breakdown of these hydrous minerals can cause seismicity at depths of 70–300 km
(intermediate depths). Here we examined a set of 17 subduction zone segments around the globe and
found that the seismicity is correlated with the faults that formed due to plate bending. This observation
can be explained if the amount of faulting prior to subduction controls the amount of hydrous mineral
formation, which subsequently determines the intensity and rate of subduction zone‐related
intermediate‐depth earthquakes.

1. Introduction

Intermediate‐depth earthquakes, defined as seismic events at depths of 70–300 km, are a unique feature of
subduction zones, delineating the upper crust and mantle of the subducting slab in what is often referred to
as the Wadati‐Benioff zone (Benioff, 1963; Wadati, 1928). The dehydration of hydrous minerals in the sub-
ducted slab is themost commonly invokedmechanism to explain events at these depths, where conditions of
high temperature and pressure should inhibit dynamic fracture or frictional sliding (Green &Houston, 1995;
Hirth & Guillot, 2013; Meade & Jeanloz, 1991; Yamasaki & Seno, 2003). Rheological instabilities in some
hydrous minerals deformed under high pressures (>1 GPa) have been observed experimentally (Ferrand
et al., 2017; Jung et al., 2004, 2009; Okazaki & Hirth, 2016; Proctor & Hirth, 2016; Raleigh & Paterson,
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1965). However, there is still ambiguity regarding the specific mechanism(s) through which hydrous
minerals can generate seismic events. Additionally, there is considerable uncertainty about the degree of
hydration of the incoming plate, particularly for the oceanic upper mantle, which should be largely
anhydrous due to extraction of water during mid‐ocean ridge melting (e.g., Hacker, 2008).

Extensional faulting due to plate bending provides a conduit for fluids into the crust and uppermost mantle.
Slab hydration and fluid circulation associated with plate bending‐related faults have been observed in seis-
mic and electromagnetic studies (Cai et al., 2018; Grevemeyer et al., 2007; Key et al., 2012; Nedimović et al.,
2009; Van Avendonk et al., 2011; Worzewski et al., 2011). Numerical models suggest that stress and pressure
changes during slab bending and slab unbending can induce circulation of fluid through the fault zones into
the lithospheric mantle (Faccenda et al., 2009, 2012). Subducting slabs have been inferred to contain a sig-
nificant amount of water, with hydration of the crust and mantle deduced from seismic surveys (Abers,
2000; Cai et al., 2018; Faccenda et al., 2008; Peacock, 1990; Pozgay et al., 2009; Zhao et al., 2007) and from
chemical enrichments observed in arc magmas (e.g., Plank & Langmuir, 1998; Stern, 2002).

This wide range of observations for incoming plate hydration, together with the experimental evidence for
embrittlement of hydrous minerals at high pressures, leads to an expected relationship between incoming
plate bending faults, amount of slab hydration, and intermediate‐depth seismicity (Ranero et al., 2005). A
correlation between the hydration state of the incoming plate and the seismicity rate in the subducted slab
has been established regionally (Shillington et al., 2015). However, a previous attempt to find a worldwide
relationship based on the predicted water flux due to mineral dehydration did not find a correlation
(Barcheck et al., 2012). Here we show that incoming plate faults, which may control the extent of hydration
pathways in the subducted slab, correlates globally with the off‐trench intermediate‐depth earthquakes. We
postulate that the global distribution of intermediate‐depth earthquakes is controlled by the extent of fault-
ing and fracturing on the incoming plate, and thus, that hydration is inherited through the brittle deforma-
tion history of the incoming plate.

2. Methods
2.1. Seismicity Rate for Intermediate Depth Earthquakes

In order to quantify the seismic productivity of intermediate‐depth earthquakes, we used the International
Seismological Centre (ISC) Bulletin earthquake catalog (http://www.isc.ac.uk). The ISC Bulletin is the most
complete and comprehensive teleseismic earthquake catalog available and includes documentation of
globally recorded earthquake hypocenters, phases, magnitudes, and other pertinent earthquake data (e.g.,
Di Giacomo et al., 2015).

The intermediate‐depth events used in this study were chosen based on three criteria: (1) focal depth of
70–300 km, (2) magnitude of mb ≥ 4.5, and (3) occurrence between 1964 to 2015. Although the ISC catalog
contains events beginning in 1900, global monitoring of earthquakes for these magnitudes became effective
only in the 1960s. We define the seismicity rate as the number of events normalized by the trench length
(km) and time (year).

We estimated the seismicity rate for 17 subduction zone segments (Figure 1) with trench lengths of
210–1,450 km (Table S1 in the supporting information). For each segment, the increasing focal depth of
intermediate‐depth events away from the trench traces the descending slab. Maps of each subduction zone
showing the trench segments are provided in Figure S1 in the supporting information.

2.2. Bending‐Related Fault Throw

Slab flexure and the resulting tensional stresses generate normal faulting (e.g., Ludwig et al., 1966; Parsons &
Molnar, 1976; Ranero et al., 2003). The bending‐related normal faults, manifested in horst and graben
features, are a common characteristic of subduction zones and can be seen in seismic reflection images
and bathymetric maps up to about 100 km seaward of the trench axis (e.g., Chapple & Forsyth, 1979;
Hilde, 1983).

We quantified the vertical component of fault displacement (i.e., fault throw) in the incoming plate using a
compilation of previously published bathymetry data from seismic reflection imaging and ship‐based multi-
beam mapping (Table S2). In regions with sparse or no data for bending fault offset, we used bathymetric
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data from the Global Multi‐Resolution Topography (Ryan et al., 2009) accessed with GeoMapApp (http://
www.geomapapp.org/). Topographic profiles orthogonal to both fault strike and the trench were
manually selected and used to calculate the vertical fault throw on distinct seaward facing normal faults
(Figures 2 and S2). We quantified the maximum fault throw (MFT) for each region as a representation of
the regional faulting intensity. Here we focus on MFT calculated as the average of the largest 10% of fault
throw measurements for each region, but we also evaluated MFT based on the largest 5%, 20%, and 30%
of fault throw measurements (Figure S3).

Fault throw represents fault displacement when a small variation in dip angle is assumed. We use it here to
represent fault intensity on the assumption that this provides a proxy for hydration of the incoming plate. We
therefore omit bathymetry related to seamounts and focus on bathymetry related to plate faulting.

Figure 1. (left) Global map showing the subduction zone segments used in this paper (segment numbers correspond to
IDs in Table S1). Intermediate‐depth earthquakes are delineated by circles colored by the hypocenter depth. (right)
Enlargement of the South‐America trench, subdivided into four segments of different seismicity rates.

Figure 2. Bathymetry and incoming plate roughness due to bending faults. (a) The South American coast with intermedi-
ate‐depth earthquakes (from Figure 1). The yellow boxes show the locations of the zoomed‐in bathymetry images shown
in b and c. (b and c) Bathymetric maps (Global Multi‐Resolution Topography) where A‐A′ and B‐B′ indicate the cross
sections in d and e, respectively, showing the rough central (b) and conversely smooth southern (c) bathymetry off South
America.
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Topographic fault scarps and fault throw estimates have often been used to infer regional stress state,
tectonics, and deformation rates where direct field studies are not possible, such as is in other submarine
environments and planets (Schultz et al., 2006; Wilkins et al., 2002).

3. Results
3.1. Comparison of Incoming Plate Properties With Seismicity Rate

The covariation of the bathymetric expression of faults (as represented byMFT), and the intermediate‐depth
seismicity rate for the 17 trench segments, is shown in Figure 3. This correlation suggests a general trend,
where the largest fault throws are associated with an increase in intermediate‐depth seismicity. For example,
the bathymetry of Cascadia presents low fault throw values of less than 50 m (Masson, 1991) and no
intermediate‐depth earthquakes have been recorded at this subduction zone. On the other hand, the highly
faulted slab at the Tonga trench has the highest seismicity rate of our data set (46.2 · 10−3 km−1 year−1).
Regional data show a similar trend. For example, we divided the Nazca plate, which subducts beneath
South America, into four parts according to the bathymetric texture (Figure 1). Along the northern part of
the South America trench, the bathymetry is rough with MFT ~ 800 m, whereas the ocean‐floor becomes
smoother toward the south with MFT ~ 80 m (Figure 2). The seismicity rate follows this trend, with higher
seismicity rates corresponding to regions with rougher fault scarps. To test possible variations in the magni-
tude completeness of the ISC seismic catalog, we compared the seismicity rate with a threshold of mb ≥ 4.5
and threshold of mb ≥ 5.6 (Di Giacomo et al., 2015). We found no significant statistical difference in the
seismicity rate between the two thresholds (Figure S4).

Syracuse et al. (2010) defined several slab properties, and the correlation of these properties with seismicity
rate is shown in Figure 4; slab age (Figure 4a), convergence velocity (Figure 4b), dip angle (Figure 4c), and
thermal parameter (Figure 4d). In contrast to the positive trend between MFT and seismicity rate, none of
these parameters show a clear correlation with intermediate‐depth earthquake intensity. In particular, the
thermal parameter (φ) is defined as the product of slab age and convergence velocity perpendicular to the
trench (Kirby et al., 1996), where higher values of φ correspond to cooler slabs. This parameter provides a
proxy for slab temperature, assuming that heating of the subducting lithosphere is by conduction (Molnar
et al., 1979). The thermal state of a subduction zone has been assumed to control deep seismicity due to
temperature‐dependent mineral breakdowns reactions (Kirby et al., 1991), yet φ is not correlated with
seismicity rate (Figure 4d).

3.2. Statistical Significance of the MFT Correlation With Seismicity Rate

We use three different statistical measures to evaluate the correlations between MFT and properties of the
incoming plate (Table S3): (1) the Pearson product‐moment correlation coefficient, (2) the Kendall rank

Figure 3. The seismicity rate of intermediate‐depth earthquakes against the incoming plate maximum fault throw.
Maximum fault throw error bars are the standard deviation of the averaged 10% fraction of the largest fault throws,
except Java, which is estimated to be 100–500 m by Masson (1991). The error bars for segment 15 are smaller than the
symbol size.
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correlation coefficient, and (3) the Spearman rank correlation coefficient. The Pearson's coefficient is used to
explore the linear dependence between two variables. The other two coefficients provide a measure of how
well the relationship between the two variables can be described by a monotonic function. In other words,
they test the extent to which the positive/negative relationship between two variables is systematic without
the necessity of a linear relationship. We also calculated the p‐value to test the significance of the
correlations, where p varies between 0 and 1 and a small p‐value indicates evidence against the null
hypothesis. In our analyses, the null hypothesis is that no correlation exists between the two variables.
We consider a correlation to be significant when p ≪ 0.05 and when the correlation coefficients are
higher than ~0.6.

Our analysis reveals high, statistically significant correlations between seismicity rate and MFT for all three
statistical tests (Figure S5). The correlation between seismicity rate and MFT (average of the top 10% of fault
throws) shows values of 0.86, 0.6, and 0.74 for the Pearson, Kendall, and Spearman coefficients, respectively
(Table S3). In contrast, none of the four other parameters (slab age, velocity, dip, and thermal parameter)
show a significant correlation, with coefficients <0.54, 0.21, and 0.32 for the Pearson, Kendall, and
Spearman coefficients, respectively (Figure S4). We also tested different definitions for MFT, using both
higher (20% and 30%) and lower (5%) percentages of the total fault throw to calculate MFT. The correlation
of seismicity rate with MFT is statistically significant for all definitions although using a higher percentage
(20 or 30% of the largest faults throws) results in slightly lower correlations.

The rank correlation coefficients (Kendall and Spearman) give slightly lower correlations than the linear
correlation coefficient (Pearson), because they are less sensitive to extreme values. The high value of the
Pearson coefficient partly stems from the high MFT and seismicity rate values Tonga and South
Peru‐North Chile. Nevertheless, the fact that the rank dependence coefficients also show significant correla-
tions supports our finding of a positive relationship between MFT and seismicity rate.

4. Discussion

Our results indicate that bending‐related faulting of the incoming plate may have a significant control on the
seismicity rate of intermediate‐depth earthquakes. This relationship between shallow incoming plate faults
and intermediate‐depth seismicity rate was previously shown for the Nazca and Cocos plates and was inter-
preted as fault reactivation (Ranero et al., 2005). However, Warren et al. (2007, 2008) found that rupture
directivity of intermediate‐depth earthquakes was inconsistent with the orientation of outer‐rise normal

Figure 4. The seismicity rate of intermediate‐depth earthquakes plotted against slab properties from Syracuse et al.
(2010): (a) age, (b) convergence velocity, (c) dip angle, and (d) thermal parameter.
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faults. Thus, the correlation that we observe may instead be explained by hydration along these faults, with
subsequent embrittlement of the hydrated regions at >70 km, in accordance with nucleation mechanisms
for intermediate‐depth earthquakes.

4.1. Fault‐Zone Damage Leads to Slab Hydration

Bending faults provide a pathway for fluid circulation and deep hydration within the downgoing plate (Emry
& Wiens, 2015; Grevemeyer et al., 2007; Iyer et al., 2012; Key et al., 2012; Nishikawa & Ide, 2015; Ranero
et al., 2003; Ranero & Sallares, 2004; Tilmann et al., 2008). The damage associated with faulting leads to
channels of increased permeability that allow deep fluid penetration into the oceanic lithosphere (e.g.,
Naif et al., 2015), and these fluids react with the host rock to form hydrous minerals (e.g., Andreani et al.,
2007). The ability of fluids to penetrate and react deep in the lithosphere is governed by properties such as
fracture density, permeability, and porosity, which are enhanced by faulting (Sibson, 2000). Importantly,
these physical properties are expected to evolve through progressive displacement on faults.

Fault displacement and length scaling relationships (Cowie & Scholz, 1992; Schultz et al., 2006) suggest that
for greater fault displacement (and therefore greater fault throw), a larger volume of the incoming plate is
damaged. This provides the potential for enhanced hydration on larger faults, and thus, more hydrous
minerals would then be available at intermediate depths to cause dehydration embrittlement. Gouge thick-
ness (Scholz, 1987) and damage zone (DZ) thickness (Faulkner et al., 2011; Savage & Brodsky, 2011; Shipton
& Cowie, 2001) increase with increased fault displacement. Hence, the ability of fluids to migrate through
the rock is dependent on the DZ structure. Within the core of a fault, the permeability may be low due to
the presence of fault gouge. However, in material adjacent to the fault core, the permeability can be an order
of magnitude higher as a result of cracking in the region known as the DZ (Caine et al., 1996; Evans
et al., 1997).

Mitchell and Faulkner (2012) showed that fracture density, DZ width, and fault displacement control overall
DZ permeability and that fault‐related fracturing and permeability scale with fault displacement. The displa-
cement (d) is scaled with the width of damage surrounding the fault (DW):

DW ¼ a d
bþ d

(1)

where DW is in meters and a and b are constants with values of 96.25 and 147.16, respectively (Mitchell &
Faulkner, 2012; Savage & Brodsky, 2011) based on regression of fault‐zone data (Faulkner et al., 2011).
Cowie and Scholz (1992) showed that the fault length (L) can be scaled with the displacement:

d=L ∝ 0:01 (2)

Assuming Andersonian faults with 60° dip, displacement can be estimated from the fault throw. Using
equations (1) and (2), the area of the DZ due to faulting can be estimated:

DZ ¼ L ·DW (3)

where DZ has units of m2. The faults related DZ increases the permeability around the fault and allows fluid
infiltration and subsequent hydration (Reynolds & Lister, 1987; Rüpke & Hasenclever, 2017).

For the bending faults in this study, the DZ width, estimated from the fault‐throw, shows a quasi‐linear rela-
tionship with the seismicity rate (Figure 5). As hydration kinetics are relatively fast (Martin & Fyfe, 1970),
the limiting factor for slab hydration is the supply of water through brittle slab fractures and faults
(Rüpke et al., 2013). Althoughmineral production during hydration reactions has the potential to seal cracks
(e.g., Michibayashi et al., 2008), the reaction also results in a positive volume change that can generate
additional fracturing and permeability (Audet et al., 2009; Jamtveit et al., 2009). The relationship between
mechanical faulting and the extent of plate hydration has been observed in extensional faults at continental
rifts (Pérez‐Gussinyé & Reston, 2001), where faults have been found to serve as fluid conduits for hydration.
Bayrakci et al. (2016) used seismic tomography of a continental margin offshore fromwestern Spain to deter-
mine that the volume of serpentine had a linear dependence with the amount of fault displacement, consis-
tent with the linear relationship presented in this study (Figure 5). We conclude that fault displacement
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controls the overall DZ structure and permeability of the subducted plate and that bending faults function as
conduits for fluid infiltration into the oceanic lithosphere. Therefore, MFT provides a proxy for the extent of
hydration in the slab, which later leads to intermediate‐depth seismicity.

4.2. The Effect of Incoming Plate Structure on Intermediate Depth Earthquakes

Previous studies have investigated the relationship between the thermal structure of the slab, dehydration,
and intermediate‐depth seismicity (Abers et al., 2013; Hacker et al., 2003; van Keken et al., 2011; Wei et al.,
2017). The premise behind such studies is that dehydration and breakdown of hydrous minerals cause
intermediate‐depth seismicity, as the thermo‐petrological state of the slab determines when mineral phase
boundaries are crossed, controlling the depth of earthquakes (Gorbatov & Kostoglodov, 1997; Hacker
et al., 2003; Peacock, 2001). Fracturing, elevated fluid pressure, and stress heterogeneities due to dehydration
may all contribute to the nucleation of intermediate‐depth earthquakes (Davies, 1999; Ferrand et al., 2017;
Gasc et al., 2017).

The correlation of thermal structure and slab age with intermediate‐depth seismicity suggests that the
nucleation mechanism is temperature dependent (Brudzinski et al., 2007). This could be associated with
the specific rheology of the hydrous minerals that have formed due to the brittle‐ductile‐brittle transitions
characteristic of many hydrous minerals (Brantut et al., 2011; Jung et al., 2009; Proctor & Hirth, 2016;
Raleigh & Paterson, 1965). Alternatively, seismicity may result from dehydration embrittlement and the
related change of fluid pressure and stress heterogeneities (Ferrand et al., 2017; Hirth & Guillot, 2013;
Okazaki & Hirth, 2016). Although the pressure‐temperature conditions in the slab are a first‐order control
on the release of fluids at intermediate depths, here we find that a mechanical parameter, fault throw, deter-
mines the net availability of fluids and therefore controls the intensity of intermediate‐depth seismicity.

5. Conclusions

We show a significant correlation between a global data set of intermediate‐depth seismicity rates and the
occurrence of shallow faulting caused by plate bending. Other parameters of the subducted slab such as plate
age, convergence velocity, dip angle, and thermal parameter do not show a statistically significant correla-
tion. Our results suggest that shallow processes associated with bending faults of the incoming plate have
a strong control over intermediate‐depth seismicity rate. We propose that the hydration extent of the
subducted slab, estimated from its faulting, exerts a primary control on the prevalence of intermediate‐depth
seismicity. Thermo‐petrological models that seek to describe intermediate‐depth earthquakes through

Figure 5. (left) Seismicity rate plotted against damage‐zone width estimated from fault displacements. Data from this study show a similar relationship to the esti-
mated extent of hydration as a function of damage‐zone width as determined from seismic data by Bayrakci et al. (2016) for the Iberia rifted margin. (right)
Schematic diagram of a subduction zone, illustrating the relationship between bending faulting, incoming plate hydration, and intermediate‐depth seismicity
(modified from Billen, 2009).
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mineral phase stability and breakdown of hydrous phases should also account for the extent of hydration
within the slab.
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